
End-user Driven Feedback Prioritization

Norbert Seyff1,2, Melanie Stade1, Farnaz Fotrousi1,3, Martin Glinz2, Emitza Guzman2,
Martina Kolpondinos-Huber2,4, Denisse Munante Arzapalo5, Marc Oriol6, and

Ronnie Schaniel1

1 University of Applied Sciences and Arts Northwestern Switzerland, Switzerland
2 University of Zurich, Switzerland

3 Blekinge Institute of Technology, Sweden
4 Swiss Federal Laboratories for Materials Science and Technology (Empa), Switzerland

5 Fondazione Bruno Kessler, Italy
6 Universitat Politècnica de Catalunya, Spain

norbert.seyff@fhnw.ch

Abstract. End-user feedback is becoming more important for the evolution of
software systems. There exist various communication channels for end-users
(app stores, social networks) which allow them to express their experiences and
requirements regarding a software application. End-users communicate a large
amount of feedback via these channels which leads to open issues regarding the
use of end-user feedback for software development, maintenance and evolution.
This includes investigating how to identify relevant feedback scattered across
different feedback channels and how to determine the priority of the feedback
issues communicated. In this research preview paper, we discuss ideas for end-
user driven feedback prioritization.

Keywords: Requirements prioritization · End-user involvement · End-user
feedback

1 Introduction

Building software systems which reflect the needs of end-users is crucial for their
success. Hence it is important to gather end-user requirements and to include them in
requirements prioritization and release planning activities. However, involving a large
number of end-users in requirements elicitation activities can be cumbersome using
traditional requirements elicitation methods (e.g., interviews), also because end-users
are often out of organizational reach [1]. In such settings, end-user feedback gathering
is one way that allows software companies to elicit and consider end-users’
experiences and requirements for software development, maintenance and evolution
activities. For this purpose, companies can make use of feedback communication
channels such as app stores (e.g., Google Play, Apple’s App Store), social networks

© Copyright 2017 for this paper by its authors. Copying permitted for private and academic purposes.

(e.g., Facebook, Twitter) and built-in feedback mechanisms which are part of the
software application itself.

However, there are several issues regarding the elicitation and analysis of end-user
feedback. Most of the feedback channels available (e.g., Twitter) do not focus
exclusively on the communication of feedback relevant to software development,
maintenance and evolution: they also allow for a discussion on various topics
regarding a software application [2]. Therefore, identifying relevant feedback can be
difficult in case a large amount of data is available and cannot be manually conducted
within a reasonable amount of time and effort. Furthermore, feedback communicated
using natural language text, does not follow any predefined structure or template. It is
more the informal description of an issue or need than a formalized requirement.
Some feedback channels also allow the documentation of multi-modal feedback
descriptions which include screenshots and audio recordings. The lack of structure
and the use of multi-modal descriptions can have a negative effect on the analysis of
the feedback issue and can complicate the definition of a requirement [3], whether it
is done manually or with the help of (semi-)automatic approaches.

Another critical issue is trust [4]. Most channels invite everybody to contribute and
communicate feedback. It means that feedback issues can also be communicated from
end-users with low reputation and might be misleading, not representing the opinion
of the majority of end-users. In the worst case, some end-users might even negatively
affect the evolution of a system by exaggerating or reporting wrong issues. These
problems sometimes make it hard for a software company to decide which feedback
issues actually are of high priority and should be considered in a next release of their
software application.

The goal of our work is to provide approaches which go beyond the elicitation of
end-user feedback and also establish an order of priority for the feedback issues
gathered. We want to achieve this by involving end-users in the prioritization of
feedback issues and by realizing (automated) feedback analysis approaches to
generate priorities for feedback issues. This will, for example, allow software
companies to generate adequate release plans [5].

2 Approaches for End-user Driven Feedback Prioritization

Our ongoing research within the EU project SUPERSEDE has revealed that there
exist feedback channels (e.g., social networks) where a large number of feedback is
communicated. Investigating end-user feedback communicated via Twitter, we have
learned that the manual analysis of this feedback by software development companies
is not feasible, because it would consume too much time and effort [2]. Hence,
involving end-users in this task and making use of automated approaches for feedback
analysis is needed to support the identification and prioritization of relevant feedback.
In the following paragraphs we present several ideas the authors are working on to

allow for and support End-user Driven Feedback Prioritization. We structure these
ideas by looking at feedback gathering, feedback analysis and the inclusion of end-
user feedback in decision making.

2.1 Prioritization within Feedback Gathering

Elicitation of end-user feedback is a first crucial step for end-user involvement in
software development, maintenance and evolution. There exists a broad range of
methods and tools which allow end-users to communicate their needs (e.g., [6]). The
following ideas allow prioritization within feedback gathering and are currently
explored by the authors.

Feedback Approaches Supporting the Communication of Priorities. There exist
feedback communication channels which provide means for end-users to go beyond
text-based feedback descriptions and to communicate a priority. This priority can be
expressed, for example, by using ratings and it might cover different interpretations
of what is actually meant by priority (e.g., importance for the individual end-user vs.
importance for application success). Furthermore, some of these channels also allow
end-users to specify the type of feedback they are communicating. For example, this
could include a selection to define if a feedback issue is a “bug report” or a “feature
request”. Communicating a priority should be possible with little effort to avoid that
end-users cancel the feedback communication. Allowing end-users to also
communicate a priority regarding their request is a first important step towards End-
user Driven Feedback Prioritization. However, such priorities need to be looked at
with care, as end-users might have their own interpretation of what they actually want
to communicate via the priority field; they often will just express their subjective
opinion. It is essential to validate such priorities in order to gain trust.

Feedback Approaches Supporting the Discussion of Feedback amongst End-
users. Some feedback channels allow end-users to discuss their feedback with peers.
This includes, for example, social networks that enable end-users to communicate
their agreement or disagreement (e.g., by using likes) regarding the feedback issues
which have been gathered [7]. An example for a forum that focuses on requirements
elicitation and prioritization is Garuso (Game-based Requirements elicitation). It
enables stakeholders outside organizational reach to communicate, discuss and rate
their ideas over a forum-like online platform. Garuso makes use of gamification
elements to motivate end-users to participate which was explored in previous research
by the authors [8]. We consider approaches such as Garuso to allow for an early
validation of relevance and priority of end-user feedback issues. However, ratings of
end-users, for example expressed with “I like”, might be ambiguous as it might not be
clear what the end-user providing the rating is actually fond of. Apart from

commenting on the content, a like could also discuss the representation style of a
feedback issue or simply show that one end-user is friendly with another one. To
avoid such ambiguity, Garuso proposes a two-dimensional mechanism which covers
grouping based on relevance (irrelevant, neutral, and relevant) and rating based on
popularity (dislike, neutral, and like). Further, to avoid false contributions, i.e.,
grouping and rating of feedback issues only to earn points, Garuso offers the
possibility to deliberately not taking any decision by selecting no decision (which
gives the same amount of points to the end-users as if they grouped and rated a
feedback issue).

2.2 Prioritization with the Help of Feedback Analysis

End-user feedback needs to be analyzed. Ideally there are automated methods and
tools in place which support the analysis of the feedback gathered. We discuss how
analysis can be used to generate priorities for end-user feedback issues.

Number of Feedback Issues Discussing the Same Issue. One possible option to
analyses feedback issues is to group them and build clusters of end-user concerns.
Obviously, the number of feedbacks within a cluster can help to indicate a priority.
This could also mean that feedback from different channels is analyzed and clustered.

Sentiment of the Feedback Issues. We use the term sentiment to refer to the feeling
or view reflected in a feedback text. A text could express a negative (e.g., “I hate
uploading files with this app!”) or positive (e.g., “The performance of this app is
amazing!”) sentiment. More negative sentiments could express higher end-user
dissatisfaction and could therefore indicate a higher resolution urgency [9].

Type of Feedback Issues. The type of a feedback issue (e.g. bug report, feature
request, general praise) might be explicitly communicated by end-users but there also
exist automated approaches to do so [10] [11]. We assume that in most cases certain
feedback types (e.g., bug report) might be more critical to be resolved and therefore
have a higher priority than other issues (e.g., feature request).

Monitoring Data and Feedback Issues. Several other informations can help to
automatically define or tailor the priority of a feedback issue. For example, there
might be situations where one single end-user reports an issue (e.g., “My video stream
is constantly buffering”). However, with the help of monitoring data, it is possible to
analyze the dimension of this problem and detect if other end-users also experience a
similar problem. This can help to prioritize and address the problem. Another
example of the benefits of monitoring data is that monitoring can also be used to
identify how the software is being used and detect which are the most used and

important functionalities. This information can be helpful to better understand the
priority of incoming feedback. In case it addresses a widely and intensively used
functionality, the feedback might be of higher priority.

2.3 Prioritization and Decision Making within the Software Company

The requirements prioritization decision making is a crucial activity in software
development [12]. These decisions often involve different stakeholders including
representatives of end-users, managers, and developers [13] and they are often based
on different criteria such as development effort, user impact, costs, resource
constraints. Several decision making techniques have been proposed to support
requirements prioritization [14]. In the following paragraphs, we discuss ideas on how
to involve end-users in the decision making process.

Other Requirements and Feedback Issues. In many software development
organizations feedback issues might not be the only source for gathering
requirements. In case feedback issues and requirements from other sources (e.g.,
interviews or workshops with different stakeholder groups) discuss the same need as
incoming feedback issues, this indicates a high priority, in particular when different
stakeholder groups are involved. Furthermore, it is important to define to what extent
a specific source influences the overall priority of a requirement by e.g. defining
weights for each source that contributes to a requirement. We are also envisioning
mechanisms that assess the quality of the incoming feedback and generate a
reputation score for particular end-users. Eventually this can also be used as
weighting mechanisms which gives a higher priority to feedback from trusted senders
with a solid reputation.

Validation of End-user Feedback Priority. Even though we have identified several
ideas on how to determine the priority of a feedback issue, decision makers will need
to be involved to finally decide on the priority of a feedback issue. We foresee that a
high number of evidences on a feedback’s priority might be helpful for decision
makers to make a final decision. Therefore, we recommend that a decision maker
(e.g., a product owner) has access to and can visualize end-user driven feedback
prioritization derived from different sources. Furthermore, feedback issues can be
used as input for other requirements elicitation and negotiation activities in order to be
discussed with other stakeholders to ensure their validity.

Validation of Requirements from other Sources with the Help of Feedback
Channels. We also foresee that feedback channels will be used to validate
requirements from other sources. For example, in case the Product Owner is unsure
about some of her ideas and the importance of these ideas, she can ask end-users for

their priority (e.g., via a new discussion thread in an online forum or a popup-window
within an application).

3 Conclusion and Next Steps

End-user feedback is becoming more important for the evolution of software systems.
However, it is crucial to better understand the importance and relevance of end-user
feedback. Prioritized end-user feedback can help to build software systems which are
widely accepted by end-users and to make the software evolution process more
efficient.

In this paper, we presented first ideas on how to engage end-users in feedback
prioritization. Furthermore, we explored (automated) analysis approaches which
exploit information gathered from end-users to prioritize their feedback. We are
currently realizing the bespoke prioritization approaches within the SUPERSEDE EU
project. Next steps will include an investigation into the consequences of involving
end-users in feedback prioritization. We expect that transparent prioritization
approaches will help end-users to understand why a feedback issue is eventually
considered for implementation and will help to continuously engage end-users in
feedback gathering and prioritization activities.

4 Acknowledgment

The research described in the paper was in part funded by the EU project
SUPERSEDE (grant agreement no 644018).

References

1. Todoran, I., Seyff, N., Glinz, M. (2013) How cloud providers elicit consumer
requirements: An exploratory study of nineteen companies. In: International Requirements
Engineering Conference , pp. 105–114.

2. Guzman, E., Alkadhi, R., Seyff, N. (2016) A Needle in a Haystack: What Do Twitter
Users Say about Software?. In: International Requirements Engineering Conference, pp.
96–105.

3. Gärtner, S., Schneider, K. (2012) A method for prioritizing end-user feedback for
requirements engineering. In: International Workshop on Co-operative and Human
Aspects of Software Engineering, pp. 47–49.

4. Dalpiaz, F. (2011) Social threats and the new challenges for Requirements Engineering. In:
International Workshop on Requirements Engineering for Social Computing, pp. 22–25.

5. Greer, D., Ruhe, G. (2004) Software release planning: an evolutionary and iterative
approach. Information and Software Technology 46(4), pp. 243–253.

6. Seyff, N., Ollmann, G., Bortenschlager, M. (2014) AppEcho: a user-driven, in situ

feedback approach for mobile platforms and applications. In: MOBILESoft, pp. 99–108.
7. Seyff, N., Todoran, I., Caluser, K., Singer, L., Glinz, M. (2015) Using popular social

network sites to support requirements elicitation, prioritization and negotiation. J. Internet
Services and Applications 6(1), 7:1–7:16.

8. Huber, M. Z., Hilty, L.M. (2015) Gamification and Sustainable Consumption: Overcoming
the Limitations of Persuasive Technologies. In: ICT Innovations for Sustainability, pp.
367–385.

9. Chen, N., Lin, J., Hoi, S. Ch., Xiao, X., Zhang, B. (2014) AR-miner: mining informative
reviews for developers from mobile app marketplace. In: International Conference on
Software Engineering, pp. 767–778.

10. Guzman, E., El-Haliby, M., Bruegge, B. (2015) Ensemble methods for app review
classification: An approach for software evolution. In: Automated Software Engineering
(ASE), pp. 771–776.

11. Panichella, S., Di Sorbo, A., Guzman, E., Vissagio, C. A., Canfora, G., Gall, H. (2015)
How can I improve my app? classifying user reviews for software maintenance and
evolution. In: Software Maintenance and Evolution (ICSME), pp. 281–290.

12. Firesmith, D. (2004) Prioritizing requirements. Journal of Object Technology 3(8), pp. 35–
48.

13. Ruhe, G., Saliu, M. (2005) The art and science of software release planning. IEEE
Software 22(6), pp. 47–53.

14. Achimugu, P., Selamat, A., Ibrahim, R., Mahrin, M.N. (2014) A systematic literature
review of software requirements prioritization research. Inf. Softw. Technol. 56(6), pp
568–585.

